Localization using a Region-Based k-Nearest Neighbour Search

نویسنده

  • Brian McKinnon
چکیده

This paper explores a method of performing localization on local vision mobile robots. It describes a method of processing images, extracting regions, and comparing those regions against a database of preprocessed images. Localization is achieved using the k-nearest neighbour algorithm as the basis for approximating the current position. Initial results are provided that show the potential of this method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some improvements on NN based classifiers in metric spaces

The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...

متن کامل

Eecient Nearest-neighbour Searches Using Weighted Euclidean Metrics

Building an index tree is a common approach to speed up the k nearest neighbour search in large databases of many-dimensional records. Many applications require varying distance metrics by putting a weight on diierent dimensions. The main problem with k nearest neighbour searches using weighted euclidean metrics in a high dimensional space is whether the searches can be done eeciently We presen...

متن کامل

An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation

Ramasubramanian, V. and K.K. Paliwal, An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation, Pattern Recognition Letters 13 (1992) 471-480. An efficient approximation-elimination search algorithm for fast nearest-neighbour search is proposed based on a spherical distance coordinate formuTation, where a vector in K...

متن کامل

Extending Fast Nearest Neighbour Search Algorithms for Approximate k-NN Classification

The nearest neighbour (NN) and k-nearest neighbour (kNN) classi cation rules have been widely used in pattern recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search can become unpractical when facing large training sets, high dimensional data or expensive similarity measures. In the last years a lot of NN search algorithms have been developed to overcome those...

متن کامل

An optimized version of the Approximating and Eliminating Search Algorithm (AESA) for Nearest Neighbour classification

The Approximating and Eliminating Search Algorithm (AESA) and related AESA-based techniques are among the fastest methods for (k-)Nearest Neighbour(s) searching in general metric spaces. These techniques can be optimized for the (easier) (k-)Nearest Neighbour(s) classification problem. In particular, an optimized version of the AESA is proposed here which is shown to be significantly faster tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004